3.426 \(\int \frac{1}{(c+\frac{a}{x^2}+\frac{b}{x})^2 x^3} \, dx\)

Optimal. Leaf size=66 \[ \frac{2 a+b x}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac{2 b \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

[Out]

(2*a + b*x)/((b^2 - 4*a*c)*(a + b*x + c*x^2)) - (2*b*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/
2)

________________________________________________________________________________________

Rubi [A]  time = 0.033888, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1354, 638, 618, 206} \[ \frac{2 a+b x}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac{2 b \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c + a/x^2 + b/x)^2*x^3),x]

[Out]

(2*a + b*x)/((b^2 - 4*a*c)*(a + b*x + c*x^2)) - (2*b*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/
2)

Rule 1354

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + 2*n*p)*(c + b/x^n +
a/x^(2*n))^p, x] /; FreeQ[{a, b, c, m, n}, x] && EqQ[n2, 2*n] && ILtQ[p, 0] && NegQ[n]

Rule 638

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*p + 3)*(2*c*d - b*e))/((p + 1)*(b^2
- 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (c+\frac{a}{x^2}+\frac{b}{x}\right )^2 x^3} \, dx &=\int \frac{x}{\left (a+b x+c x^2\right )^2} \, dx\\ &=\frac{2 a+b x}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac{b \int \frac{1}{a+b x+c x^2} \, dx}{b^2-4 a c}\\ &=\frac{2 a+b x}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{b^2-4 a c}\\ &=\frac{2 a+b x}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac{2 b \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0665612, size = 69, normalized size = 1.05 \[ \frac{2 a+b x}{\left (b^2-4 a c\right ) (a+x (b+c x))}-\frac{2 b \tan ^{-1}\left (\frac{b+2 c x}{\sqrt{4 a c-b^2}}\right )}{\left (4 a c-b^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c + a/x^2 + b/x)^2*x^3),x]

[Out]

(2*a + b*x)/((b^2 - 4*a*c)*(a + x*(b + c*x))) - (2*b*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])/(-b^2 + 4*a*c)^(3
/2)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 70, normalized size = 1.1 \begin{align*}{\frac{-bx-2\,a}{ \left ( 4\,ac-{b}^{2} \right ) \left ( c{x}^{2}+bx+a \right ) }}-2\,{\frac{b}{ \left ( 4\,ac-{b}^{2} \right ) ^{3/2}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c+a/x^2+b/x)^2/x^3,x)

[Out]

(-b*x-2*a)/(4*a*c-b^2)/(c*x^2+b*x+a)-2*b/(4*a*c-b^2)^(3/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x^2+b/x)^2/x^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.70397, size = 740, normalized size = 11.21 \begin{align*} \left [\frac{2 \, a b^{2} - 8 \, a^{2} c -{\left (b c x^{2} + b^{2} x + a b\right )} \sqrt{b^{2} - 4 \, a c} \log \left (\frac{2 \, c^{2} x^{2} + 2 \, b c x + b^{2} - 2 \, a c + \sqrt{b^{2} - 4 \, a c}{\left (2 \, c x + b\right )}}{c x^{2} + b x + a}\right ) +{\left (b^{3} - 4 \, a b c\right )} x}{a b^{4} - 8 \, a^{2} b^{2} c + 16 \, a^{3} c^{2} +{\left (b^{4} c - 8 \, a b^{2} c^{2} + 16 \, a^{2} c^{3}\right )} x^{2} +{\left (b^{5} - 8 \, a b^{3} c + 16 \, a^{2} b c^{2}\right )} x}, \frac{2 \, a b^{2} - 8 \, a^{2} c - 2 \,{\left (b c x^{2} + b^{2} x + a b\right )} \sqrt{-b^{2} + 4 \, a c} \arctan \left (-\frac{\sqrt{-b^{2} + 4 \, a c}{\left (2 \, c x + b\right )}}{b^{2} - 4 \, a c}\right ) +{\left (b^{3} - 4 \, a b c\right )} x}{a b^{4} - 8 \, a^{2} b^{2} c + 16 \, a^{3} c^{2} +{\left (b^{4} c - 8 \, a b^{2} c^{2} + 16 \, a^{2} c^{3}\right )} x^{2} +{\left (b^{5} - 8 \, a b^{3} c + 16 \, a^{2} b c^{2}\right )} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x^2+b/x)^2/x^3,x, algorithm="fricas")

[Out]

[(2*a*b^2 - 8*a^2*c - (b*c*x^2 + b^2*x + a*b)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c + sqrt(
b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a)) + (b^3 - 4*a*b*c)*x)/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2 + (b^4*c -
 8*a*b^2*c^2 + 16*a^2*c^3)*x^2 + (b^5 - 8*a*b^3*c + 16*a^2*b*c^2)*x), (2*a*b^2 - 8*a^2*c - 2*(b*c*x^2 + b^2*x
+ a*b)*sqrt(-b^2 + 4*a*c)*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)) + (b^3 - 4*a*b*c)*x)/(a*b^4 -
8*a^2*b^2*c + 16*a^3*c^2 + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*x^2 + (b^5 - 8*a*b^3*c + 16*a^2*b*c^2)*x)]

________________________________________________________________________________________

Sympy [B]  time = 0.714274, size = 252, normalized size = 3.82 \begin{align*} b \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \log{\left (x + \frac{- 16 a^{2} b c^{2} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} + 8 a b^{3} c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} - b^{5} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} + b^{2}}{2 b c} \right )} - b \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \log{\left (x + \frac{16 a^{2} b c^{2} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} - 8 a b^{3} c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} + b^{5} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} + b^{2}}{2 b c} \right )} - \frac{2 a + b x}{4 a^{2} c - a b^{2} + x^{2} \left (4 a c^{2} - b^{2} c\right ) + x \left (4 a b c - b^{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x**2+b/x)**2/x**3,x)

[Out]

b*sqrt(-1/(4*a*c - b**2)**3)*log(x + (-16*a**2*b*c**2*sqrt(-1/(4*a*c - b**2)**3) + 8*a*b**3*c*sqrt(-1/(4*a*c -
 b**2)**3) - b**5*sqrt(-1/(4*a*c - b**2)**3) + b**2)/(2*b*c)) - b*sqrt(-1/(4*a*c - b**2)**3)*log(x + (16*a**2*
b*c**2*sqrt(-1/(4*a*c - b**2)**3) - 8*a*b**3*c*sqrt(-1/(4*a*c - b**2)**3) + b**5*sqrt(-1/(4*a*c - b**2)**3) +
b**2)/(2*b*c)) - (2*a + b*x)/(4*a**2*c - a*b**2 + x**2*(4*a*c**2 - b**2*c) + x*(4*a*b*c - b**3))

________________________________________________________________________________________

Giac [A]  time = 1.164, size = 103, normalized size = 1.56 \begin{align*} \frac{2 \, b \arctan \left (\frac{2 \, c x + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{{\left (b^{2} - 4 \, a c\right )} \sqrt{-b^{2} + 4 \, a c}} + \frac{b x + 2 \, a}{{\left (c x^{2} + b x + a\right )}{\left (b^{2} - 4 \, a c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+a/x^2+b/x)^2/x^3,x, algorithm="giac")

[Out]

2*b*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/((b^2 - 4*a*c)*sqrt(-b^2 + 4*a*c)) + (b*x + 2*a)/((c*x^2 + b*x + a)
*(b^2 - 4*a*c))